The logical semantic underpinnings of cross-linguistic variation in ‘figurative’ uses of verbs

The formal linguistics literature on the syntax and semantics of verbs focuses primarily on ‘literal’ uses such as those in (1a), and rarely on ‘non-literal’ uses such as in (1b) or (1c) (also sometimes referred to as ‘figurative’, ‘extended’ or – at least in the case of (1b) – ‘metaphorical’ uses:

(1) a. [...] the knife cut through the meat. b. His words cut with the sting of an obsidian sliver. c. a bipartisan plan to cut the deficit

Though usually no reason is made explicit for setting aside examples like those in (1b)-(1c), one plausible hypothesis is that literal uses are considered primary, while the other uses are taken to be derived from those, and therefore to be of secondary interest.

The goal of this talk, which reports on work in progress with Alexandra Spalek (U. Oslo), is to argue precisely the contrary, namely that analysis of examples like those in (1b) and (1c) alongside examples like those in (1a) is essential to properly understanding both basic verb meaning, particularly verbal polysemy, as well as the mechanisms by which the other sorts of meaning arise. Specifically, we show that while examples like (1b) may be accounted for under familiar theories of conceptual metaphor that are independent of grammar, examples like (1c) vary across languages in ways that reflect fundamental grammatical differences in aspectual systems; we make this argument through a series of contrastive case studies between English and Spanish, for which relevant aspectual differences can be independently established. Thus, comparing examples like (1c) across languages can serve as a particularly useful probe on cross-linguistic variation in the formal properties of verb meaning. We take this systematic variation to support a view of verb meaning as fundamentally underspecified and on which the apparent meaning contrasts in (1a) versus (1c) are an artifact of the verb combining with its complements.

James Hampton, Psychology, City University of London

Do we all understand word meanings in the same way? A puzzling disconnect between intensions and extensions.

We can explore people's personal understanding of word meanings in two ways. The intension is the set of features or attributes that they believe are relevant to whether some item is of a certain kind. For example that birds have two legs, feathers and can fly. The extension is the set of objects in the world to which the term refers, for example that ostriches, penguins and larks are birds,
while bats are not. I will describe a set of studies that looks for individual variation in how people understand these two aspects of the meaning of a set of superordinate categories like bird or sport. We find that there is good evidence for stable and reliable differences between individual speakers of the same dialect in both which attributes are considered most important and which category members are considered most typical or representative of the category. We test this by measuring the pair-wise similarity between the responses of individuals doing either of these judgment tasks in a given sample, and showing that the pattern of similarity and difference is stable over re-testing, and is specific to particular categories. If two individuals give a particularly similar profile of ratings to the importance of the attributes of sports, then they will still be similar when they do the task again two weeks later.

Using these similarity matrices we then discovered that the reliable similarity and difference pattern for intensions of a category do NOT map onto the similarity and difference patterns for the extension of that category. This null result is puzzling because (for instance) if two people agree that it is most important that sports involving physical exertion and exercise, then they should also agree that marathon running and triathlon are more typical as exemplars of the category. This correspondence failed to appear.

I will discuss possible explanations and present some new data that explores the issue further.